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Abstract

A general recurrence algorithm and explicit analytical
results are given for scattering integrals with Cartesian
Gaussian-type functions, in a form that is necessary
for the evaluation of molecular form factors, Wigner
distribution functions and Compton scattering cross
sections. Overlap integrals are included as a special
case.

In connection with our work on Compton scattering
cross sections (Froelich & Weyrich, 1984; Froelich,
Flores-Riveros & Weyrich, 1985; Bonham, Pattison
& Weyrich, 1986) and on Wigner distribution func-
tions we have encountered the need for compact
analytical solutions of two-centre integrals of the type

Ilmn,l’m'n'(a, b, RAB)
=[[[xhy"z4 exp (—ar?) exp (ikr)
Xxpyezy exp (—brd) dr, (1)

which we call scattering integrals for the sake of
simplicity. They also occur in the calculation of
molecular form factors and electron scattering cross
sections. Overlap integrals are included as the special
case k=0. In (1), the two Cartesian Gaussian-type
functions (CGTF’s) with real positive a, b and non-
negative integers I, m, n, I', m’, n’ (Boys, 1950) are
centred at the positions A and B. The absolute posi-
tion vector r related to the centres is r, =r—A and
rp =r—B, respectively, and the distance vector R,z
separating centre B from centre A is R, =B—A. The
Cartesian components of r, A, B are x, y, z, A,, A,
A, B,, B,, B..

The first solutions to I, rm, have been given by
McWeeny (1953) for the cases I=m=n=0'=m’'=
n'=0(1s,1s), I=m=n=0, I'+m’'+n'=1 (1s,2p),
and I+m+n=1, I'+m'+n'=1 (2p,2p). [The 2s-
type solutions of McWeeny are outside the system-
atics of (1).] Chandler & Spackman (1978) have pre-
sented formulaeupto, m,nand I', m’, n'=3, i.e. up
to f-type functions, by using the standard approach
of replacing the two-centre product of the two
CGTF’s by a polynomial times a single CGTF
centred between A and B at the position P=
(aA+bB)/(a+ b) (Boys, 1950; Shavitt, 1963; see also
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Saunders, 1975, 1983). Earlier, Guerillot, Ganachaud
& Lissillour (1968) followed the same procedure for
scattering integrals formulated in a different way. The
work of Groenewegen & Feil (1969) and, in a more
general way, the work of Rae (1978) deal with analyti-
cal solutions for scattering integrals with spherical
Gaussian-type functions (SGTF’s).

For the complex-coordinate treatment of the
Compton scattering cross section (Froelich & Wey-
rich, 1984; Froelich, Flores-Riveros & Weyrich, 1985),
basis sets including functions with unusually high I,
m, n are needed. The physical reason is the descrip-
tion of the ejected electron which is hidden in the
formalism by closure. Furthermore, the evaluation of
the Wigner distribution function of atoms and
molecules at a large number of points in phase space
requires efficient algorithms in order to make comput-
ing times tolerable. Both aspects have led us to search
for a general solution for the integrals of (1).

The first step is the Cartesian factorization

Linn,vn(@, b, RaB)
=Iy(a, b, B,~ A,) X Inm(a, b, B,— A,)
x I(a, b, B,— A,) )
with
Iy(a, b, B, - A,)

=T (= A exp-a(x~ AV exp (ik)

x (x— B,)" exp [-b(x— B,)*] dx (3)

and analogous expressions for I, and I, (see also
Chandler & Spackman, 1978). The factorization is
based on the relationship

r2A= (x_Ax)2+(y—Ay)2+(z—Az)2,
rZB= (x—Bx)2+(y_By)2+(z_Bz)2a
k.r=kx+ky+k,z. 4)

Our approach, which can be considered as the CGTF
counterpart to the method of Lofthus (1962) for the
recursive evaluation of overlap integrals between
Slater-type functions (STF’s), then consists of the
repeated application of McWeeny’s (1953) method
of differentiation by A, or B, in order to raise I/ or
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I', respectively. While McWeeny has done only the
special step I=0to I =1, it follows from

3{(x—A,) exp[—a(x—A,)T}/3A,
=2a(x—A,)"" exp[-a(x - A,)?]
—I(x_Ax)I—l exXp [_a(x_Ax)z] (5)

(with an analogous expression in B,) and the inter-
change of the order of differentiation and integration
that

ol/0A, =2ali v — Uiy (6a)
and
aI"'/an = 2bILp+1 - IIILI'_l.

Given the integrals

(6b)

To00,000 = IH exp (—ark) exp (ik.r) exp (—br}) dr
=[n/(a+b)]? exp{[-abR%s
+ik(aA+bB)—k?/4]/(a+b)}
(McWeeny, 1953) or
Ioo=Jexp [—a(x — A;)*] exp (ikx)
x exp [—b(x — B,)*] dx
=[m/(a+b)]"? exp {[—ab(B, - A,)’
+ik.(aA.+bB,) —ki/4)/(a+b)}, (7b)

it is possible to evaluate all integrals I analytically
by upward recurrence

Ly r=(1/2a)[81/0A+ 11, 1]

(7a)

(8a)
and

Ly =(1/2b)[01y/ 8B+ 'l ]. (8b)

However, doing the recurrence by a paper-and-
pencil approach quickly becomes very tedious, all the
more so since possibilities of simplifying the
expressions are frequently overlooked. It is therefore
desirable to cast the recurrence into such a form that
it can be computed using standard science-oriented
programming languages.

Differentiation of Iy, by A, and B, yields

0loo/3A, ={[2ab(B, — A,) +iak,]/(a+b)}I,, (9a)
and
8Ioo/3B. ={[2ab(A, — B,) +ibk.]1/(a+b)} . (9b)

Since Iy, is an exponential function, it persists as a
common factor in all integrals I, under the recur-
rence. If we abbreviate the factor of Iy in (9a) by F,
and the factor in (9b) by G,, we can write

8F,./0A,=0G,/dB,=-2ab/(a+b) (19a)
and

dF,/0B, =3G,/3A,=+2ab/(a+b) (10b)

EFFICIENT EVALUATION OF X-RAY SCATTERING INTEGRALS

for their differentiation. Since the right-hand sides of
(10a) and (10b) no longer contain A, and B,, all
integrals I are eventually sums of terms of the form

nF;G5(1/2a)(1/2b)°[2ab/(a+ b)) Lo, (1)

where a, B, 7, 8, ¢ and u are integer numbers.
Differentiation and division by 2a or 2b of such a
term u{a, B; v, 8, £} leads to

(1/2a)duie, B; v, 8, £}/9A,
=—pafa—-1,8;y+1,8 +1}
+:u'ﬁ{aa B _1, 'Y+1, 8, £+1}

tuf{a+1,B8;v+1, 8, ¢} (12a)
and
(1/2b)au{e, B; v, 8, €}/9B,
=tpa{a—-1,8;v,86+1,e+1}
—-uB{a,B—-1;y,6+1,e+1}
tufa, B+15y, "+1, e}, (12b)
respectively. Addition of terms
I(1/2a)v{{, m; 6,4, k}=W{{, m; 0+1, ¢, k} (13a)
or
ra/2b)yvie, m; 6, o, k}=1v{f,n; 6,.+1,k}  (13b)

completes the recurrence. At every recursive step the
number of terms of an integral is almost quadrupled
at first glance. However, terms with the same set of
five exponents can be collected as

wie, B; v, 8, e} +vi{a, B; v, 6, €}
=(u+v){a,B; 7,8, ¢}

and, if u+» =0, be deleted from the list.

By this reformulation of the recurrence, complete
analogy to the approach of Lofthus (1962) for overlap
integrals between STF’s is achieved, with the only
difference that here five indices are to be handled
rather than two. If the integrals I are specialized to
k. =0, i.e. to overlap integrals, the number of indices
reduces to four according to

{a, B; 7, 8, e}, —o=(~1)?[2ab(B, - A,)/(a+b)]***
x(1/2a)”(1/2b)°[2ab/(a+ b)]*
=(-1)’(B.— A)"**(1/2a)"
x(1/2b)°[2ab/(a+b)]**F**
=(-1)Pla+8; v 8 a+B+e] (15)

because G, (k, =0)=—F, (k. =0). How (12a) to (14)
simplify in this case is obvious.

The implementation of the expansion of the for-
mulae by (12a) to (13b) and of the compression by
(14) has been programmed here in analogy to the
technique introduced by Zupan (1974) for the Lofthus

(14)



259

MRINMAYEE BARUA AND WOLF WEYRICH

the first

two columns containl and I’ while the remaining part of the table gives the sextuplets in the form u; * { a;, B;; v, 6;, &}

B

Table 1. Sextuplets of parameters u;, a;, B:, ¥i, 8, & for pairs of quantum numbers II' (or mm’, nn’)

for equations (17), (19), (20) and (21)
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formulae. The practically important difference arises
from the Cartesian factorization of (2).

In the case of STF’s the factorization is not possible,
and the number of overlap integrals (nlmaA|n’'l'm'bB)
increases with n®, which increases the computer code
for higher n excessively. The recurrence of only two
indices, on the other hand, makes it feasible to derive
the required formula every time an overlap integral
is needed, although we find this situation by no means
ideal with the need to calculate many such integrals
for reciprocal form factors

B(r)=Y Y ¥ nickey

i k j
x[[§o¥(s—Ri+D)er(s—Ry) dr, (16)

as the Fourier transform of electron momentum
densities (Benesch, Singh & Smith, 1971; Thulstrup,
1976; Pattison & Williams, 1976; Pattison, Weyrich
& Williams, 1977; Schiilke, 1977, Weyrich, 1978;
Weyrich, Pattison & Williams, 1979).

Because of the factorization according to (2) the
number of integrals over CGTF’s increases only with
the square of the angular quantum number I, whence
itis advisable to implement ready analytical solutions
in the computer code for all I;; needed. Probably the
most efficient way is to work with the six-parameter
terms of (11). The parameters u, @, B, ¥, 8, ¢ for all
Iy with L 1" up to 5 (ie. h orbitals and higher) are
given in Table 1. All formulae are verified by quad-
rature; they exhibit no numerical instabilities.

In summary the integrals I, are thus written as

III'(aa b3 Bx - Ax) = IOO(aa b; Bx _Ax)
XZ wide, Bis vi, 8, &}

= Ioo(a, bs Bx "Ax)

XZ wiF3 G5
x(1/2a)"(1/2b)>%
x[2ab/(a+b)]* amn
with
F.=[2ab(B,— A,)+iak.]/(a+b), (18a)
G.=[2ab(A,-B,)+ibk.]/(a+b) (18b)

and a set of u,, a;, Bi, v, 6:, & that depends on [, I'
as given in Table 1. The formulae for I, (a, b, B, -
A)) and I,,(a, b, B,— A,) are based on the same set
of parameters u;, a;, Bi, Vi, 6;, €& In

Imm'(09 b, By - Ay) = IOO(a, ba By - Ay)
XY piF5 G

x(1/2a)"(1/2b)%

x[2ab/(a+b)]% 19)

EFFICIENT EVALUATION OF X-RAY SCATTERING INTEGRALS

and
Inn’(aa ba Bz - Az) = IOO(a’ ba Bz - Az)
XY wF3iG8

x(1/2a)"(1/2b)*
x[2ab/(a+b)]%,  (20)

where F,, G, and F,, G, are given by (18a) and (18b)
with x replaced by y and z, respectively.

The total scattering integral for a given vector k is
then

Ilmn,l’m’n’(a, bs RAB)
=[n/(a+b)]*?exp{[—abR%p
+ik.(aA+bB)—k*/4]/(a+b)}

x L w,F&GE (1/2a)"(1/2b)* [2ab/(a+ b)]*

i

x ¥ wFypGY (1/2a)%(1/2b)% [2ab/(a+ b)]*i

j(mm")

X ¥ mFxGE«(1/2a)"(1/2b)*[2ab/(a+b)]*

k(nn’)
(21)

The summation indices i, j, k are here discriminated
for the sake of greater clarity. The notation i(ll'),
Jj(mm'), k(nn') means that they are the current num-
bers of terms in the sets given in Table 1 for II', mm'’
and nn’, respectively.

The similarity of (21) with the result of Chandler
& Spackman (1978) raises the question of in what
respect they differ. The difference lies in the sums, as
becomes immediately apparent when counting the
number of terms. In the case of I=1'=3, Table 1
shows 18 terms, while the corresponding (triple) sum
in the result of Chandler & Spackman contains 36
terms in total.

We are very grateful fof the efficient support by
the Fonds der Chemischen Industrie.
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Abstract

The symmetry of quasi-crystals, a class of materials
that has recently aroused interest, is discussed. It is
shown that a quasi-crystal is a special case of an
incommensurate crystal phase and that it can be
described by a space group in more than three
dimensions. A number of relevant three-dimensional
quasi-crystals is discussed, in particular dihedral and
icosahedral structures. The symmetry considerations
are also applied to the two-dimensional Penrose
patterns.

1. Introduction

Recently an Al-Mn alloy was found (Shechtman,
Blech, Gratias & Cahn, 1984) that shows a number
of uncommon properties. It has sharp peaks in its
diffraction pattern, indicating long-range ordering.
Its point-group symmetry, however, is not one of the
crystallographic ones but contains fivefold axes, a
fact that is incompatible with a periodic lattice. The
phenomenon was considered so remarkable that its
discovery reached the newspapers and it was stated
that a new state of matter had been discovered. Five-
fold axes had already been found in computer simula-
tions of alloys (Steinhardt, Nelson & Ronchetti,
1983). Perhaps that is not so surprising, because
fivefold symmetry was reported much earlier for pack-
ings in space. Coxeter refers in his beautiful book
Introduction to Geometry (Coxeter, 1961, 1980) to an
experiment carried out in 1727 by Stephen Hales who
studied the form of peas pressed together in a box

0108-7673/86/040261-11$01.50

and observed the appearance of regular dodecahedra.
A similar experiment with lead spheres was per-
formed by Marvin in 1939 (see also Matzke, 1950).

The diffraction pattern is certainly new, but can be
considered as a special case of a larger and already
intensively studied class of materials: incommensu-
rate crystal phases. Such a phase is characterized by
the fact that its diffraction spots are sharp but need
for their labelling more than the usual three integer
indices. The five points of a regular pentagon are
rationally dependent (their sum is zero), but four of
them are rationally independent. Therefore, one
needs at least four integers for the indices of a pattern
with fivefold symmetry. The difference with the crystal
phases observed until now is that there is no lattice
of main reflections, such as present in, for example,
incommensurately modulated crystals. For incom-
mensurate crystal (IC) phases it has been shown (de
Wolff, 1977; Janner & Janssen, 1977, de Wolff,
Janssen & Janner, 1981) that the symmetry group is
a group of transformations in a space with more than
three dimensions. Here we shall address the questions
how to describe the symmetry in the more general
case and to study the possible structures.

In their study of the liquid-solid phase transition,
Alexander & McTague (1978) showed in the
framework of Landau theory that under certain con-
ditions b.c.c. crystal structures are favoured. In the
same paper they pointed out the possibility of a
transition to a structure for which the wave vectors
are points of a regular icosahedron and which has,
consequently, no space-group symmetry. After the

© 1986 International Union of Crystallography



